Main | About GUPIX | Download | Features | Quick Ref | GUPIX Users Worldwide

Features of GUPIXWIN

Spectral Data are accepted in Guelph's ASCII format and in several formats compatible with commercial MCA cards.

The Ion Beam may be:

X-ray Detector may be Si(Li), SDD or HPGe.

Non-Linear Least Squares Fit of Marquardt type, modified to prevent premature elimination of weak peaks. The five parameters of a quadratic channel-versus-energy and a linear (peak width)2-versus-energy system calibration are variables, in addition to the height of each element's principal peak.

Peak Description can be Gaussian or Voigtian with low energy tailing: in Voigtian case, Gaussian resolution is convoluted with natural Lorentzian line profile; tailing details can be modified for specific detector. Pile-up by Johansson "pile-up element" (including both double and triple pile-up) or by auto-convolution which describes also peak+continuum pileup. Escape peaks are included; in the Si(Li) case the escape peak is asymmetric, reflecting the Si KL satellites.

Background is removed by top-hat digital filtering ; no analytical model needed; the user can choose among filter options that optimize different asepcts.

X-ray Filters (i.e. absorbers) are specified via atomic number thickness and hole fraction (funny filter).

Specimens may be thin, intermediate, thick, or layered.

Matrix Corrections will be applied accordingly to relative X-ray intensities, provided matrix is defined . See below for iterative matrix determination in cases where the matrix is not initially defined.

Elements may be designated as:

and matrix corretions will be appropriate in each case. In analysis of minerals, concentrations may be specified as elements or oxides in input/output.

Atomic Physics Database includes:

Principal X-ray Line defaults to K-alpha, K-alpha-1 or L-alpha or L-alpha-1, M-alpha or M-alpha-1, but operator may designate K-beta, L-beta, L-gamma etc, if it appears more favourable as regards detection limits.

X-ray Yields can be computed for thin and thick targets, including full secondary fluorescence for thick targets (GUYLS).

Spectrum Fitting provides tables of peak areas, two error recipes, detection limits, target depth for defined fractional X-ray yield and corresponding ion beam energy. Plots of measured and fitted spectra, residues, data minus fit, etc.

Thin or Thick Target Calibration by Guelph H value method . H is essentially ratio of measured to computed X-ray, and H may be determined with pure element or synthetic standards.

Other Calibrations may easily be added by user to her/his taste.

Concentrations of Trace Elements are provided in ppm or ng/cm2 if H is specified and matrix elements are defined (Z, CONCENTRATION). Limits of detection (LODs) are also provided for elements observed, and also approx. LODs given for elements not present. Secondary fluorescence by the X-rays of matrix elements is automatically accounted for. Peak areas are augmented for pile-up losses before conversion to concentrations.

Matrix (Major, Minor) Element Concentrations available by iterative solution that has secondary fluorescence by matrix elements automatically corrected for. One light element that is known to be present but is "invisible" in the spectrum, eg. S or O, may be included in the matrix using the fact that elements sum to 100%. Similarly, invisible complexes such as SiO4 in zircon, may be handled.

K-alpha - K-beta Decoupling Option may be used in fit for elements subject to secondary fluorescence or for characteristic lines from critical filter/absorber or for PIXE lines heavily attenuated by absorber.

Weighting Schemes: Various uncertainties ,eg. absorber transmission, K-beta/K-alpha ratio, may be used to augment the conventional chi squared weighting .

Output options include both graphical options and csv files. One csv file option provides concentrations, percent errors, detection limits and decisions as to presence/absence of each element. A second option provides peak areas, percent errors, area limits of detection, and presence/absence decisions.

Batch Fitting can be used to handle large numbers of similar spectra in batch mode. It is available for PIXE using one detector and also for two-detector PIXE where one detector records the trace element spectrum and the other records the major element spectrum

Tests: GUPIX has been tested successfully on various IAEA standards, NIST standard alloys, and synthetic mineral standards, and in numerous comparisons between micro-PIXE, EPMA, and other methods. Nevertheless it is the user's responsibility to establish GUPIX's accuracy in her or his particular context. The creators of GUPIX accept no responsibility for the accuracy of analytical results that are generated using GUPIX.

Documentation: An extensive manual accompanies GUPIXWIN. Purchasers should familiarize themselves with this documentation prior to running GUPIX.